Drug Discovery and Development

使用微升流速液质联用法测定生物体液中单克隆抗体的通用 性方法

SCIEX QTRAP[®] 6500⁺ LC-MS/MS系统和OptiFlow™ Turbo V 离子源及 M5 MicroLC 系统

Lei Xiong, Ji Jiang, and Remco van Soest SCIEX, Redwood City, California, USA

LC-MS/MS作为传统配体结合分析(LBAs)的正交技术,已 被广泛应用于日常的生物药定量分析。生物样本的样品量通常是 非常有限的,因此需要高灵敏度的分析方法,MicroFlow LC-MS/ MS在这方面有非常大的优势。微升流速色谱技术和免疫亲和样 品制备方法的实施,大大提高了检测灵敏度。微升流速液相色谱 提升了多倍的信号强度,而基于免疫亲和原理的样品制备方法大 大提高了样品的净化度,从而减少了基线干扰¹。本文介绍了一 种用于超灵敏定量小鼠血浆中SILuLite SigmaMAb抗体的混合LBA/ MicroFlow LC-MS/MS工作流程。这种方法也可以转移到动物基质 中其他任何单克隆抗体的定量分析中。

SCIEX免疫亲和-MicroLC-MS/MS解决方案主要 特点

- M5 MicroLC 系统可提供:
 - 微升流速控流量控制,可将流速精确至1 µL/min
 - 实现快速和大体积进样的捕集-洗脱选项
 - 与任何MicroFlow LC 色谱柱灵活搭配
- 搭配OptiFlow™ Turbo V离子源的QTRAP[®] 6500⁺ LC-MS/MS系统 可提供(Figure 1)
 - 设置简单,无需优化探头或电极位置
 - 性能稳定,电极寿命长
- 优化的免疫亲和样品制备方法可提供:
 - 降低样本复杂性和基质干扰
 - 满足所需的线性动态范围
 - 缩短样品制备时间

SCIE

方法

目标分析物的免疫捕获:(图2)将涂有链霉亲和素的免疫亲 和性磁珠浆等量均分并用PBS缓冲液(1x)洗涤三次。将生物素 标记抗人IgG抗体(0.5 mg/mL)加入磁珠中,在室温下摇动孵育 1小时。将结合后的磁珠洗涤三次并重新悬浮于PBS缓冲液(1x) 中。25 μL小鼠血浆加入SILuLite标准品,作为校准标准品。血浆 中的SILuLite浓度分别为2、10、50、100、500、1000、5000、 10000和20000 ng/mL,以SILuMab为内标。在每个校准标准样品 中,添加100 μL PBS缓冲液(1x)、50 μL结合的磁珠浆和内标, 并在室温下摇动孵育1小时。用磁力架富集珠粒,然后用PBS缓冲 液(1x)和10 mM碳酸氢铵依次清洗。将磁珠在0.1%TFA溶液中 旋涡培养10分钟,洗脱目标蛋白。

免疫亲和富集洗脱液的蛋白酶酶解:将洗脱液转移到96个孔板,使用1 mM氯化钙在500 mM碳酸氢铵水中中和。

图2. 样品制备工作流程。

将样品板放入加热摇床中,在95 下摇匀培养10分钟。随后 冷却至室温,并向每个样品中添加1 μg trypsin/Lys-C混合酶。将样 品在50 下缓慢摇动培养1小时以进行胰蛋白酶消化,然后加入 甲酸中止。取上清液进行LC-MS/MS分析。

微升流速液相色谱-质谱条件:样品一式三份,用QTRAP[®] 6500⁺ LC-MS/MS结合M5 MicroLC,以捕获-洗脱方式对样品进行 分析。表1描述了待测物捕获的色谱条件。表2描述了待测物分离 的色谱条件。在样品上样过程中,分析物被捕集柱捕获并脱盐。 在待测物分离过程中,辅助阀在前5分钟处于"Injection"位置, 以连接捕集器柱和分析柱。

5分钟时,将辅助阀切换到"Load"位置,将捕集器柱与上样 泵连接,以进行柱清洗(图3)。

图 3. 阀配置. 图示"Load"位置 (上图) and "Inject"位置 (下图)。

质谱分析采用QTRAP[®] 6500⁺ LC-MS/MS及OptiFlow™ Turbo V 离子源,装配25 µm Steadyspray™探针和电极。优化后的MS参数 见表3和表5。使用MultiQuant™ 3.0 software软件进行数据处理。

常规流速液相色谱-质谱条件:为了确定常规流速检测和微升 流速检测之间的灵敏度差异,用QTRAP[®]6500⁺LC-MS/MS系统结合 Exion LC™ AC系统对每个样品进行分析。表4描述了常规流速的液 相色谱条件。MRM参数与微升流速检测相同(表3)。离子源/气 体参数在0.7 mL/min流速下优化,如表5所示。使用MultiQuant™ 3.0处理数据。

表1. 微升流速色谱分析条件: 待测物捕获。

Parameter	Value
Stationary phase	Phenomenex Luna 5 μm, C18 Trap Column, 20×0.3 mm
Mobile phase A	0.1% formic acid in water
Mobile phase B	0.1% formic acid in acetonitrile
Flow rate	50 μL/min
Column temperature	Room Temperature
Injection volume	30 µL

Time	Flow Rate (µL/min)	% A	% B
0	50	100	0
7	50	100	0
8	50	10	90
9	50	10	90
9.1	50	100	0
12	50	100	0

表2. 微升流速色谱分析条件: 待测物分离。

Parameter	Value
Stationary phase	Phenomenex Kinetex 2.6 µm, XB-C18 Column, 50 x 0.3 mm
Mobile phase A	0.1% formic acid in water
Mobile phase B	0.1% formic acid in acetonitrile
Flow rate	5 μL/min
Column temperature	40 °C
Injection volume	NA

表4. 常规流速的色谱条件。

Parameter	Value
Stationary phase	Phenomenex Kinetex C18 column, 50 x 3.0 mm
Mobile phase A	0.1% formic acid in water
Mobile phase B	0.1% formic acid in acetonitrile
Flow rate	0.7 mL/min
Column temperature	40 °C
Injection volume	30 µL

Time	Flow Rate(µL/min)	%A	%B	Comment
0	5	97	3	
5	5	65	35	Valve Load
5.2	5	10	90	
9.8	5	10	90	
10	5	97	3	
12	5	97	3	

表3. 微升流速分析的MS条件。

Name	Q1	Q3	DP	CE	СХР
GPSVFPLAPSSK1	593.8	699.4	78	28	15
GPSVFPLAPSSK21	593.8	846.5	78	28	15
FNWYVDGVEVHNAK1	560.0	708.8	60	22	15
FNWYVDGVEVHNAK2	560.0	615.7	60	23	15
GPSVFPLAPSSK[H] ²	597.8	854.5	78	28	15
FNWYVDGVEVHNAK[H] ²	562.9	713.3	60	23	15

¹ Most suitable transition for quantification. ² Internal standard transitions.

Time	Flow Rate (ml/min)	%A	%B
0.0	0.7	95	5
0.7	0.7	95	5
0.8	0.7	90	10
3.5	0.7	75	25
4.0	0.7	60	40
4.5	0.7	10	90
6.0	0.7	10	90
6.1	0.7	95	5
7.5	0.7	95	5

表5. 用于微升流速和常规流速分析的MRM离子源/气参数。

Source/Gas Parameter	Microflow Value	Analytical Flow Value
Curtain Gas:	25	30
lon Source Gas 1:	20	65
Ion Source Gas 2:	15	65
CAD gGs:	High	High
Ion Spray Voltage:	5000	5500
Source Temperature:	150	600

结果和讨论

标记肽的选择考虑了离子化和裂解效率、基线噪音和翻译后 修饰的几方面。这些肽具有与免疫球蛋白G(lgG)相同的保守氨 基酸序列。因此,MRM方法可以应用于其他基于免疫球蛋白的生 物治疗药物而无需修改。对于每一个肽,选择具有最高S/N的MRM 离子对进行定量。为了在有限的样品体积(每个样品25微升血 浆)下达到所需的分析灵敏度,采用了微升流速色谱技术和基于 免疫亲和原理的样品制备方法。采用5 µL/min的HPLC流速来提高 离子化效率;采用捕获-洗脱方式来增加样品注入量和缩短样品加 载时间。对标记肽的MRM参数进行了微升流速和常规流速的分别 优化。免疫捕获原理的样品制备方式有效降低了基质干扰。

在优化的方法条件下,所述微升流速分析实现了小鼠血浆中 SILuLite 2 ng/mL的LLOQ定量能力(图4)。如表6所示,所有样品 的测定准确度为87-109%,CV %s低于15%。校准曲线覆盖了4.5 个数量级(1-20000 ng/mL)(图5),使用1/x2的权重计算回归 系数(r)为0.996。

图4. SILuLite的MRM数据。SILuLite MRM的提取离子流图(XICs)。从左到 右依次为空白, 2 ng/mL, 10 ng/mL。

图5. 血浆中2 ng/mL 到 20000 ng/mL SILuLite校准曲线。

为了进一步确认微升流速分析和常规流速分析之间的灵敏度 差异,在相同进样量的情况下,同时使用两套LC-MS系统分析了 同一样品。如图6所示,使用微升流速色谱,低浓度样品峰面积增 加3倍以上,S/N增加2倍以上。

图6. 微升流速与常规流速信号比较。在2 ng/mL(上图)和10 ng/mL(下 图)的浓度下, MRM提取离子流图(XICs)。左边是常规流速下的XICs, 右边是微升流速下的XICs。

结论

通用免疫亲和微升流速液相色谱-质谱联用法,建立了测定 小鼠血浆中SILuLite含量的方法。采用QTRAP[®] 6500⁺ LC-MS/MS 系统,配以OptiFlow™ Turbo V离子源和M5 MicroLC系统,以 2 ng/mL的水平对SILuLite进行了定量分析,具有高重现性、4个数 量级的动态范围和最低的离子源优化要求。该方法可应用于其它 生物治疗药物的临床前定量分析。

表6. 定量结果汇总。

Actual Conc. (ng/mL)	Calculated Conc. (ng/mL)	Accuracy (%)	CV (%)
2	1.94	96.8	6.1
10	11.5	114.5	7.5
50	52.3	104.7	2.3
100	108.6	108.6	3.5
500	508.2	101.6	1.0
1000	887.5	88.8	4.6
5000	4895.9	97.9	3.3
10000	9200.6	92.0	0.9
20000	19022.9	95.1	1.6

参考文献

 Zhang F., Li Y., etc, Quantification of Trastuzumab in Rat Plasma using an Improved Immunoaffinity-LC-MS/MS Method, SCIEX Technical Note

For Research Use Only. Not for use in Diagnostics Procedures.

AB Sciex is operating as SCIEX. © 2019. AB Sciex. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. RUO-MKT-02-8279-ZH-A

 SCIEX中国公司
 上海

 北京分公司
 上海

 地址:北京市朝阳区酒仙桥中路24号院
 地址:

 1号楼5层
 电话:

 电话:010-58081388
 电话:

 传真:010-58081390
 传真:

 全国免费垂询电话:800 820 3488,400 821 3897

 上海公司及亚太区应用支持中心

 地址:上海市长宁区福泉北路518号

 1座502室

 电话:021-24197200

 传真:021-24197333

 3897

 网址:www.sciex.com.cn

广州分公司 地址: 广州市天河区珠江西路15号 珠江城1907室 电话: 020-85100200 传真: 020-38760835

微博:@SCIEX